A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities

Y Song, T Wang, P Cai, SK Mondal… - ACM Computing Surveys, 2023 - dl.acm.org
Few-shot learning (FSL) has emerged as an effective learning method and shows great
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …

Survey of hallucination in natural language generation

Z Ji, N Lee, R Frieske, T Yu, D Su, Y Xu, E Ishii… - ACM computing …, 2023 - dl.acm.org
Natural Language Generation (NLG) has improved exponentially in recent years thanks to
the development of sequence-to-sequence deep learning technologies such as Transformer …

Prior guided feature enrichment network for few-shot segmentation

Z Tian, H Zhao, M Shu, Z Yang, R Li… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve
good results and hardly work on unseen classes without fine-tuning. Few-shot segmentation …

DeepEMD: Few-shot image classification with differentiable earth mover's distance and structured classifiers

C Zhang, Y Cai, G Lin, C Shen - Proceedings of the IEEE …, 2020 - openaccess.thecvf.com
In this paper, we address the few-shot classification task from a new perspective of optimal
matching between image regions. We adopt the Earth Mover's Distance (EMD) as a metric to …

Spectral feature augmentation for graph contrastive learning and beyond

Y Zhang, H Zhu, Z Song, P Koniusz… - Proceedings of the AAAI …, 2023 - ojs.aaai.org
Although augmentations (eg, perturbation of graph edges, image crops) boost the efficiency
of Contrastive Learning (CL), feature level augmentation is another plausible …

Matching feature sets for few-shot image classification

A Afrasiyabi, H Larochelle… - Proceedings of the …, 2022 - openaccess.thecvf.com
In image classification, it is common practice to train deep networks to extract a single
feature vector per input image. Few-shot classification methods also mostly follow this trend …

Interventional few-shot learning

Z Yue, H Zhang, Q Sun, XS Hua - Advances in neural …, 2020 - proceedings.neurips.cc
We uncover an ever-overlooked deficiency in the prevailing Few-Shot Learning (FSL)
methods: the pre-trained knowledge is indeed a confounder that limits the performance. This …

Incremental few-shot object detection

JM Perez-Rua, X Zhu… - Proceedings of the …, 2020 - openaccess.thecvf.com
Existing object detection methods typically rely on the availability of abundant labelled
training samples per class and offline model training in a batch mode. These requirements …

Deep metric learning for few-shot image classification: A review of recent developments

X Li, X Yang, Z Ma, JH Xue - Pattern Recognition, 2023 - Elsevier
Few-shot image classification is a challenging problem that aims to achieve the human level
of recognition based only on a small number of training images. One main solution to few …

Task-sequencing meta learning for intelligent few-shot fault diagnosis with limited data

Y Hu, R Liu, X Li, D Chen, Q Hu - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Recently, deep learning-based intelligent fault diagnosis methods have been developed
rapidly, which rely on massive data to train the diagnosis model. However, it is usually …