CFMf topic-model: comparison with LDA and Top2Vec

JC Lamirel, F Lareau, C Malaterre - Scientometrics, 2024‏ - Springer
Mining the content of scientific publications is increasingly used to investigate the practice of
science and the evolution of research domains. Topic models, among which LDA (statistical …

Regularized semi-supervised KLFDA algorithm based on density peak clustering

X Tao, Y Bao, X Zhang, T Liang, L Qi, Z Fan… - Neural Computing and …, 2022‏ - Springer
To solve the problem that the existing semi-supervised FISHER discriminant analysis
algorithm (FDA) cannot effectively use both labeled and unlabeled data for learning, we …

Apache Spark-based scalable feature extraction approaches for protein sequence and their clustering performance analysis

P Jha, A Tiwari, N Bharill, M Ratnaparkhe… - International Journal of …, 2023‏ - Springer
Genome sequencing projects are rapidly contributing to the rise of high-dimensional protein
sequence datasets. Extracting features from a high-dimensional protein sequence dataset …

Enhancing LDA Method by the Use of Feature Maximization

JC Lamirel - International Workshop on Self-Organizing Maps …, 2024‏ - Springer
Topic modeling is a key technique for understanding the content of collections of scientific
papers. However, commonly used methods like LDA (Latent Dirichlet Allocation) have …

Enhancing LDA Method by the Use

JC Lamirel - Advances in Self-Organizing Maps, Learning Vector …, 2024‏ - books.google.com
Topic modeling is a key technique for understanding the con-tent of collections of scientific
papers. However, commonly used methods like LDA (Latent Dirichlet Allocation) have …

Neural Networks for Spatial Models

C Hardouin, JC Lamirel - International Workshop on Self-Organizing Maps, 2022‏ - Springer
The aim of spatial econometrics is to analyze and/or predict the relationship between one
dependent variable Y with other variables, building a model that takes into account the …

[PDF][PDF] Analyse non supervisée de corpus de documents pour la recherche de sujets: une nouvelle approche basée sur le clustering et la maximisation des traits

JC Lamirel - Congrès National de la Recherche des IUT, 2024‏ - hal.science
Le présent article s' intéresse à l'extraction non supervisée des sujets portés par les
collections de documents qui est un thème du front de recherche. Il présente une nouvelle …

[PDF][PDF] La méthode de modélisation thématique CFMf basée sur le clustering neuronal avec maximisation des traits: Comparaison avec LDA sur des études …

JC Lamirel, F Lareau, C Malaterre - SFC, 2023‏ - hal.science
Résumé L'amélioration des méthodes de modélisation thématique reste une préoccupation
majeure pour l'analyse non supervisée des données textuelles. Nous proposons ici une …