A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

Recent advances of continual learning in computer vision: An overview

H Qu, H Rahmani, L Xu, B Williams, J Liu - arxiv preprint arxiv …, 2021 - arxiv.org
In contrast to batch learning where all training data is available at once, continual learning
represents a family of methods that accumulate knowledge and learn continuously with data …

Learn from others and be yourself in heterogeneous federated learning

W Huang, M Ye, B Du - … of the IEEE/CVF Conference on …, 2022 - openaccess.thecvf.com
Federated learning has emerged as an important distributed learning paradigm, which
normally involves collaborative updating with others and local updating on private data …

Class-incremental learning: survey and performance evaluation on image classification

M Masana, X Liu, B Twardowski… - … on Pattern Analysis …, 2022 - ieeexplore.ieee.org
For future learning systems, incremental learning is desirable because it allows for: efficient
resource usage by eliminating the need to retrain from scratch at the arrival of new data; …

Online continual learning in image classification: An empirical survey

Z Mai, R Li, J Jeong, D Quispe, H Kim, S Sanner - Neurocomputing, 2022 - Elsevier
Online continual learning for image classification studies the problem of learning to classify
images from an online stream of data and tasks, where tasks may include new classes …

Rainbow memory: Continual learning with a memory of diverse samples

J Bang, H Kim, YJ Yoo, JW Ha… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Continual learning is a realistic learning scenario for AI models. Prevalent scenario of
continual learning, however, assumes disjoint sets of classes as tasks and is less realistic …

Merging models with fisher-weighted averaging

MS Matena, CA Raffel - Advances in Neural Information …, 2022 - proceedings.neurips.cc
Averaging the parameters of models that have the same architecture and initialization can
provide a means of combining their respective capabilities. In this paper, we take the …

A continual learning survey: Defying forgetting in classification tasks

M De Lange, R Aljundi, M Masana… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Artificial neural networks thrive in solving the classification problem for a particular rigid task,
acquiring knowledge through generalized learning behaviour from a distinct training phase …

Few-shot class-incremental learning

X Tao, X Hong, X Chang, S Dong… - Proceedings of the …, 2020 - openaccess.thecvf.com
The ability to incrementally learn new classes is crucial to the development of real-world
artificial intelligence systems. In this paper, we focus on a challenging but practical few-shot …

Learning with fantasy: Semantic-aware virtual contrastive constraint for few-shot class-incremental learning

Z Song, Y Zhao, Y Shi, P Peng… - Proceedings of the …, 2023 - openaccess.thecvf.com
Few-shot class-incremental learning (FSCIL) aims at learning to classify new classes
continually from limited samples without forgetting the old classes. The mainstream …