Toward safe lithium metal anode in rechargeable batteries: a review

XB Cheng, R Zhang, CZ Zhao, Q Zhang - Chemical reviews, 2017 - ACS Publications
The lithium metal battery is strongly considered to be one of the most promising candidates
for high-energy-density energy storage devices in our modern and technology-based …

A review on theoretical models for lithium–sulfur battery cathodes

S Feng, ZH Fu, X Chen, Q Zhang - InfoMat, 2022 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries have been considered as promising battery systems
due to their huge advantages on theoretical energy density and rich resources. However …

Defect engineering on electrode materials for rechargeable batteries

Y Zhang, L Tao, C **e, D Wang, Y Zou… - Advanced …, 2020 - Wiley Online Library
The reasonable design of electrode materials for rechargeable batteries plays an important
role in promoting the development of renewable energy technology. With the in‐depth …

Towards high performance Li–S batteries via sulfonate‐rich COF‐modified separator

J Xu, S An, X Song, Y Cao, N Wang, X Qiu… - Advanced …, 2021 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries are held great promise for next‐generation high‐
energy‐density devices; however, polysulfide shuttle and Li‐dendrite growth severely …

A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries

B Li, Y Chao, M Li, Y **ao, R Li, K Yang, X Cui… - Electrochemical Energy …, 2023 - Springer
Lithium-metal batteries with high energy/power densities have significant applications in
electronics, electric vehicles, and stationary power plants. However, the unstable lithium …

A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte

A Kondori, M Esmaeilirad, AM Harzandi, R Amine… - Science, 2023 - science.org
A lithium-air battery based on lithium oxide (Li2O) formation can theoretically deliver an
energy density that is comparable to that of gasoline. Lithium oxide formation involves a four …

Design rules of a sulfur redox electrocatalyst for lithium–sulfur batteries

L Wang, W Hua, X Wan, Z Feng, Z Hu, H Li… - Advanced …, 2022 - Wiley Online Library
Seeking an electrochemical catalyst to accelerate the liquid‐to‐solid conversion of soluble
lithium polysulfides to insoluble products is crucial to inhibit the shuttle effect in lithium–sulfur …

Self‐assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction

Z Ye, Y Jiang, L Li, F Wu, R Chen - Advanced Materials, 2021 - Wiley Online Library
The design of nanostructured electrocatalysts with high activity and long‐term durability for
the sluggish lithium polysulfide (LiPS) conversion reaction is essential for the development …

Establishing reaction networks in the 16-electron sulfur reduction reaction

R Liu, Z Wei, L Peng, L Zhang, A Zohar, R Schoeppner… - Nature, 2024 - nature.com
The sulfur reduction reaction (SRR) plays a central role in high-capacity lithium sulfur (Li-S)
batteries. The SRR involves an intricate, 16-electron conversion process featuring multiple …

Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium–sulfur batteries

W Hou, P Feng, X Guo, Z Wang, Z Bai, Y Bai… - Advanced …, 2022 - Wiley Online Library
Defective materials have been demonstrated to possess adsorptive and catalytic properties
in lithium–sulfur (Li–S) batteries, which can effectively solve the problems of lithium …