Hierarchical reinforcement learning: A comprehensive survey

S Pateria, B Subagdja, A Tan, C Quek - ACM Computing Surveys (CSUR …, 2021 - dl.acm.org
Hierarchical Reinforcement Learning (HRL) enables autonomous decomposition of
challenging long-horizon decision-making tasks into simpler subtasks. During the past …

[PDF][PDF] Deep unsupervised domain adaptation: A review of recent advances and perspectives

X Liu, C Yoo, F **ng, H Oh, G El Fakhri… - … on Signal and …, 2022 - nowpublishers.com
Deep learning has become the method of choice to tackle real-world problems in different
domains, partly because of its ability to learn from data and achieve impressive performance …

Transfer learning in deep reinforcement learning: A survey

Z Zhu, K Lin, AK Jain, J Zhou - IEEE Transactions on Pattern …, 2023 - ieeexplore.ieee.org
Reinforcement learning is a learning paradigm for solving sequential decision-making
problems. Recent years have witnessed remarkable progress in reinforcement learning …

A survey of unsupervised deep domain adaptation

G Wilson, DJ Cook - ACM Transactions on Intelligent Systems and …, 2020 - dl.acm.org
Deep learning has produced state-of-the-art results for a variety of tasks. While such
approaches for supervised learning have performed well, they assume that training and …

Reinforcement learning in healthcare: A survey

C Yu, J Liu, S Nemati, G Yin - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
As a subfield of machine learning, reinforcement learning (RL) aims at optimizing decision
making by using interaction samples of an agent with its environment and the potentially …

Model-based reinforcement learning: A survey

TM Moerland, J Broekens, A Plaat… - … and Trends® in …, 2023 - nowpublishers.com
Sequential decision making, commonly formalized as Markov Decision Process (MDP)
optimization, is an important challenge in artificial intelligence. Two key approaches to this …

Transfer learning for smart buildings: A critical review of algorithms, applications, and future perspectives

G Pinto, Z Wang, A Roy, T Hong, A Capozzoli - Advances in Applied Energy, 2022 - Elsevier
Smart buildings play a crucial role toward decarbonizing society, as globally buildings emit
about one-third of greenhouse gases. In the last few years, machine learning has achieved …

Curriculum learning for reinforcement learning domains: A framework and survey

S Narvekar, B Peng, M Leonetti, J Sinapov… - Journal of Machine …, 2020 - jmlr.org
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks
in which the agent has only limited environmental feedback. Despite many advances over …

Q-learning algorithms: A comprehensive classification and applications

B Jang, M Kim, G Harerimana, JW Kim - IEEE access, 2019 - ieeexplore.ieee.org
Q-learning is arguably one of the most applied representative reinforcement learning
approaches and one of the off-policy strategies. Since the emergence of Q-learning, many …

A review of cooperative multi-agent deep reinforcement learning

A Oroojlooy, D Ha**ezhad - Applied Intelligence, 2023 - Springer
Abstract Deep Reinforcement Learning has made significant progress in multi-agent
systems in recent years. The aim of this review article is to provide an overview of recent …