Graph neural networks for virtual sensing in complex systems: Addressing heterogeneous temporal dynamics

M Zhao, C Taal, S Baggerohr, O Fink - ar** manufacturing, industrial processes, and
infrastructure management. By fostering new levels of automation, efficiency, and predictive …

Learning Latent Graph Structures and their Uncertainty

A Manenti, D Zambon, C Alippi - arxiv preprint arxiv:2405.19933, 2024 - arxiv.org
Within a prediction task, Graph Neural Networks (GNNs) use relational information as an
inductive bias to enhance the model's accuracy. As task-relevant relations might be …

On the Regularization of Learnable Embeddings for Time Series Processing

L Butera, G De Felice, A Cini, C Alippi - arxiv preprint arxiv:2410.14630, 2024 - arxiv.org
In processing multiple time series, accounting for the individual features of each sequence
can be challenging. To address this, modern deep learning methods for time series analysis …

グラフニューラルネットワークの最新動向

佐藤竜馬 - 電子情報通信学会 通信ソサイエティマガジン, 2024 - jstage.jst.go.jp
2 概要グラフニューラルネットワークの研究トピックは大きく分けて二種類ある. 第 1 は, 解釈性,
頑健性, 高速化, 汎化性能の解析など, 通常のニューラルネットワークにもあるトピックである …