Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical Image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

Generative adversarial network in medical imaging: A review

X Yi, E Walia, P Babyn - Medical image analysis, 2019 - Elsevier
Generative adversarial networks have gained a lot of attention in the computer vision
community due to their capability of data generation without explicitly modelling the …

Segment anything model for medical image analysis: an experimental study

MA Mazurowski, H Dong, H Gu, J Yang, N Konz… - Medical Image …, 2023 - Elsevier
Training segmentation models for medical images continues to be challenging due to the
limited availability of data annotations. Segment Anything Model (SAM) is a foundation …

Segment anything model for medical images?

Y Huang, X Yang, L Liu, H Zhou, A Chang, X Zhou… - Medical Image …, 2024 - Elsevier
Abstract The Segment Anything Model (SAM) is the first foundation model for general image
segmentation. It has achieved impressive results on various natural image segmentation …

A generalist vision–language foundation model for diverse biomedical tasks

K Zhang, R Zhou, E Adhikarla, Z Yan, Y Liu, J Yu… - Nature Medicine, 2024 - nature.com
Traditional biomedical artificial intelligence (AI) models, designed for specific tasks or
modalities, often exhibit limited flexibility in real-world deployment and struggle to utilize …

Towards generalist biomedical AI

T Tu, S Azizi, D Driess, M Schaekermann, M Amin… - NEJM AI, 2024 - ai.nejm.org
Background Medicine is inherently multimodal, requiring the simultaneous interpretation
and integration of insights between many data modalities spanning text, imaging, genomics …

Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases

X Wang, Y Peng, L Lu, Z Lu… - Proceedings of the …, 2017 - openaccess.thecvf.com
The chest X-ray is one of the most commonly accessible radiological examinations for
screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging …

Deep learning COVID-19 features on CXR using limited training data sets

Y Oh, S Park, JC Ye - IEEE transactions on medical imaging, 2020 - ieeexplore.ieee.org
Under the global pandemic of COVID-19, the use of artificial intelligence to analyze chest X-
ray (CXR) image for COVID-19 diagnosis and patient triage is becoming important …

Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks

P Lakhani, B Sundaram - Radiology, 2017 - pubs.rsna.org
Purpose To evaluate the efficacy of deep convolutional neural networks (DCNNs) for
detecting tuberculosis (TB) on chest radiographs. Materials and Methods Four deidentified …

Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines

SC Huang, A Pareek, S Seyyedi, I Banerjee… - NPJ digital …, 2020 - nature.com
Advancements in deep learning techniques carry the potential to make significant
contributions to healthcare, particularly in fields that utilize medical imaging for diagnosis …