Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical Image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives

J Li, J Chen, Y Tang, C Wang, BA Landman… - Medical image …, 2023 - Elsevier
Transformer, one of the latest technological advances of deep learning, has gained
prevalence in natural language processing or computer vision. Since medical imaging bear …

Segment anything model for medical image analysis: an experimental study

MA Mazurowski, H Dong, H Gu, J Yang, N Konz… - Medical Image …, 2023 - Elsevier
Training segmentation models for medical images continues to be challenging due to the
limited availability of data annotations. Segment Anything Model (SAM) is a foundation …

A generalist vision–language foundation model for diverse biomedical tasks

K Zhang, R Zhou, E Adhikarla, Z Yan, Y Liu, J Yu… - Nature Medicine, 2024 - nature.com
Traditional biomedical artificial intelligence (AI) models, designed for specific tasks or
modalities, often exhibit limited flexibility in real-world deployment and struggle to utilize …

Towards generalist biomedical AI

T Tu, S Azizi, D Driess, M Schaekermann, M Amin… - NEJM AI, 2024 - ai.nejm.org
Background Medicine is inherently multimodal, requiring the simultaneous interpretation
and integration of insights between many data modalities spanning text, imaging, genomics …

Segment anything model for medical images?

Y Huang, X Yang, L Liu, H Zhou, A Chang, X Zhou… - Medical Image …, 2024 - Elsevier
Abstract The Segment Anything Model (SAM) is the first foundation model for general image
segmentation. It has achieved impressive results on various natural image segmentation …

[HTML][HTML] Deep learning for chest X-ray analysis: A survey

E Çallı, E Sogancioglu, B van Ginneken… - Medical Image …, 2021 - Elsevier
Recent advances in deep learning have led to a promising performance in many medical
image analysis tasks. As the most commonly performed radiological exam, chest …

Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines

SC Huang, A Pareek, S Seyyedi, I Banerjee… - NPJ digital …, 2020 - nature.com
Advancements in deep learning techniques carry the potential to make significant
contributions to healthcare, particularly in fields that utilize medical imaging for diagnosis …

Deep learning COVID-19 features on CXR using limited training data sets

Y Oh, S Park, JC Ye - IEEE transactions on medical imaging, 2020 - ieeexplore.ieee.org
Under the global pandemic of COVID-19, the use of artificial intelligence to analyze chest X-
ray (CXR) image for COVID-19 diagnosis and patient triage is becoming important …

Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization

T Rahman, A Khandakar, MA Kadir, KR Islam… - Ieee …, 2020 - ieeexplore.ieee.org
Tuberculosis (TB) is a chronic lung disease that occurs due to bacterial infection and is one
of the top 10 leading causes of death. Accurate and early detection of TB is very important …