Artificial intelligence in histopathology: enhancing cancer research and clinical oncology
Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative
information from digital histopathology images. AI is expected to reduce workload for human …
information from digital histopathology images. AI is expected to reduce workload for human …
Deep learning in histopathology: the path to the clinic
Abstract Machine learning techniques have great potential to improve medical diagnostics,
offering ways to improve accuracy, reproducibility and speed, and to ease workloads for …
offering ways to improve accuracy, reproducibility and speed, and to ease workloads for …
Scaling vision transformers to gigapixel images via hierarchical self-supervised learning
Abstract Vision Transformers (ViTs) and their multi-scale and hierarchical variations have
been successful at capturing image representations but their use has been generally …
been successful at capturing image representations but their use has been generally …
Towards a general-purpose foundation model for computational pathology
Quantitative evaluation of tissue images is crucial for computational pathology (CPath) tasks,
requiring the objective characterization of histopathological entities from whole-slide images …
requiring the objective characterization of histopathological entities from whole-slide images …
Deep learning-enabled medical computer vision
A decade of unprecedented progress in artificial intelligence (AI) has demonstrated the
potential for many fields—including medicine—to benefit from the insights that AI techniques …
potential for many fields—including medicine—to benefit from the insights that AI techniques …
Deep learning in cancer pathology: a new generation of clinical biomarkers
Clinical workflows in oncology rely on predictive and prognostic molecular biomarkers.
However, the growing number of these complex biomarkers tends to increase the cost and …
However, the growing number of these complex biomarkers tends to increase the cost and …
Multimodal co-attention transformer for survival prediction in gigapixel whole slide images
Survival outcome prediction is a challenging weakly-supervised and ordinal regression task
in computational pathology that involves modeling complex interactions within the tumor …
in computational pathology that involves modeling complex interactions within the tumor …
The impact of site-specific digital histology signatures on deep learning model accuracy and bias
Abstract The Cancer Genome Atlas (TCGA) is one of the largest biorepositories of digital
histology. Deep learning (DL) models have been trained on TCGA to predict numerous …
histology. Deep learning (DL) models have been trained on TCGA to predict numerous …
Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
In the last few years, the deep learning (DL) computing paradigm has been deemed the
Gold Standard in the machine learning (ML) community. Moreover, it has gradually become …
Gold Standard in the machine learning (ML) community. Moreover, it has gradually become …
Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks
Traditional image-based survival prediction models rely on discriminative patch labeling
which make those methods not scalable to extend to large datasets. Recent studies have …
which make those methods not scalable to extend to large datasets. Recent studies have …